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ABSTRACT 

Digital steganography involves taking an electronic file and 

hiding it inside another electronic file.  Current digital techniques 

do not tend to take the cover (what the message is hidden in) into 

account, and thus leave telltale marks on the stego-object (what 

the cover becomes after hiding information).  Since these marks 

will cause people other than the intended recipient to suspect a 

hidden message, it is important to make them as inconspicuous as 

possible.  This paper investigates using the cover’s original 

information to avoid making marks on the stego-object, by hiding 

raw electronic files inside digital colour images.  Steganalysis and 

machine learning is then used to evaluate the hiding process in 

order to ensure the information is hidden in the best possible way.   

Categories and Subject Descriptors 

I.4.9 [Image Processing and Computer Vision]: Applications –

Steganography. 

General Terms 

Algorithms, Design, Security. 

Keywords 

Steganography, steganalysis, LSB embedding, image filtering. 

1. INTRODUCTION 
Hiding information by embedding secret data into an innocuous 

medium is often referred to as steganography.  Steganography can 

be applied electronically by taking a message (a binary file) and 

some sort of cover (often a sound or image file) and combining 

both to obtain a “stego-object”.  The stego-object is essentially the 

cover with its redundant information replaced with the message.  

Unfortunately, replacing the redundant information with 

structured message data often results in the stego-object being an 

augmented version of the cover “marked” by the hidden data – 

and this makes it easy to suspect the presence of steganography.  

Most of these marks can be attributed to the hiding algorithm’s 

lack of concern for the cover’s content.  If the cover’s original 

content were taken into account then the message could be 

concealed in areas of the cover where it would be less likely to 

leave marks. 

Previous attempts at achieving this goal have required the user to 

provide the original cover as well as the stego-object.  The best 

areas to hide are first identified in the original cover, then these 

areas are mapped across to the stego-object and the hidden 

information is retrieved.  The original cover must be provided 

because the information overwritten in the message hiding process 

may have been used to identify the best hiding areas.  However, to 

provide the original object is not secure, because taking the 

differences between the two objects would be enough to suspect 

the existence of (and in some cases, recover) the hidden 

information.   

This paper investigates an approach that eliminates the need for 

providing the original object.  We use images as a cover medium 

and introduce two new algorithms based on using image filters to 

determine effective hiding places.  The next section describes 

these algorithms.  Section 3 briefly describes some steganalysis 

methods used to test the effectiveness of the new algorithms.  

Section 4 describes the experimentation performed using the 

algorithms and the steganalysis techniques and Section 5 

describes the results of this experimentation.  Finally, the paper is 

concluded in Section 6.  

2. ALGORITHMS 
The simplest way to hide binary data on an image is to use a 

lossless image format (such as a Bitmap) and replace the x least 

significant bits of each pixel in scan lines across the image with 

the binary data.  This is not secure as an attacker can simply 

repeat the process to quickly recover the hidden information.  This 

technique, known here as “BlindHide” because of the way it 

blindly hides information, is also not good at hiding – the initial 

portion of the image is left degraded while the rest remains 

untouched. 

A tool known as “Hide and Seek for Windows 95” [1] attempts to 

get around the security issues in BlindHide by randomly 

distributing the hidden information across the image.  A more 

modern version of this algorithm, dubbed “HideSeek”, is used 

here.  HideSeek uses a random seed (provided by hashing a 

password) to pick the order in which it will write to the pixels.  

HideSeek is much more secure than BlindHide, but does not 

necessarily leave the image in a better condition.  The noise 

introduced by HideSeek is randomly placed and often causes the 

resulting stego-image to look speckled.   

The noise left behind by both HideSeek and BlindHide is much 

more noticeable to the naked eye in large blocks of colour – where 

a single modified pixel stands out amongst its uniform 

neighbours.  This is expressed explicitly by the Laplace formula 

[2].  The Laplace formula simply measures the difference between 

a pixel and its four touching neighbours. The magnitude of the 

formula increases with the colour variation and this can be used to 

detect steganography by counting the number of pixels at a given 

magnitude.  Untouched images are more likely to contain a large 

number of pixels with zero magnitudes since there is no reason for 

small random variations to occur in large blocks of colour.  Stego-

images often contain small variations, and can be detected easily 



by examining Laplace magnitude counts.  Therefore it seems 

reasonable to suggest if a hiding algorithm were able to use the 

Laplace formula during embedding, it would be able to hide the 

information in a less noticeable way.   

To do this, we introduce the FilterFirst algorithm.  FilterFirst uses 

an edge-detecting filter, such as the Laplace formula, to find the 

areas of the image where there are pixels that are the least like 

their neighbours.  It hides in the highest values of the filter first.  

Since we are only changing the x least significant bits for 

steganography, we can use the y most significant bits for the filter.  

Here x and y are integers where 1 <= x <= 7 and y = 8 - x.  We can 

guarantee that FilterFirst will be able to retrieve the information 

from the same pixels it hides in because the bits used in filtering 

are not changed by the hiding process.  FilterFirst eliminates the 

need to provide any extra information, such as the original image, 

yet ensures the same pixels are used for hiding and retrieval. 

However, FilterFirst is similar to BlindHide in that it is not a 

secure algorithm.  An attacker can repeat the filtering process and 

retrieve the hidden information with very little effort.  Whilst it 

should be more difficult to identify steganographic images using 

FilterFirst, it is much easier to retrieve the hidden information 

than with HideSeek. 

To create an algorithm that both hides effectively and securely we 

combine HideSeek and FilterFirst to create BattleSteg.  BattleSteg 

stands for Battleships Steganography and is based on playing an 

augmented game of Battleships to determine the best places to 

hide.  In this algorithm, the h% of highest filter values is 

designated as ‘ships’.  ‘Shots’ are randomly picked as pixel 

positions on the cover image, until a ship is found (known as a 

‘hit’).  When a hit occurs, the next series of shots are clustered 

around that hit in the hope there are more ships in that area.  After 

i initial shots we return to shooting randomly to prevent huge 

expanding clusters of shots – which may cause noticeable visual 

degradation on the stego-image.  BattleSteg is overall more likely 

to avoid pixels in large blocks of colour than HideSeek, yet has a 

similar amount of security as without the random seed it is 

impossible to know where to place the shots. 

3. STEGANALYSIS 
Just as clever techniques have been devised for hiding 

information, an equal number of clever techniques have been 

designed to detect the hidden information [3].  These techniques 

are collectively known as ‘steganalysis’.  As introduced earlier, 

the Laplace formula is one such steganalytic method.  Two other 

popular techniques are RS Analysis [4] and Sample Pairs Analysis 

[5]. 

RS Analysis makes small modifications to the least significant bit 

plane in an image then uses these modifications and a 

discrimination function to classify groups of pixels.  The counts of 

the groups based on the modifications allow the calculation of an 

estimated embedding rate.  Images that do not contain 

steganography often have a natural embedding rate of up to 3%, 

whereas images containing hidden information usually have 

estimated embedding rates which accurately reflects the amount of 

hidden information. 

RS Analysis is a special case of Sample Pairs Analysis, which also 

uses least significant bit modifications to help calculate an 

estimated embedding rate.  Sample Pairs Analysis utilises finite 

state machines to classify groups of pixels modified by a given 

pattern.  Both steganalysis techniques are very accurate at 

predicting the embedding rate on stego-images using least 

significant bit embedding.  Since the two proposed techniques, 

FilterFirst and BattleSteg, both use least significant bit 

embedding, we can use RS Analysis and Sample Pairs Analysis to 

compare them against more traditional techniques such as 

BlindHide and HideSeek. 

4. EXPERIMENTAL DESIGN 
Rather than evaluating a set of images by calculating the 

steganalysis information and checking the values by hand, 

machine learning is used.  The idea behind this is simple – if a 

machine learner has trouble accurately predicting whether 

steganography is present, then the steganographic method is more 

effective for that picture than a method where the machine learner 

can correctly classify the image.  Across many images, the 

accuracy of all predictions should indicate the effectiveness of one 

algorithm over another. 

For testing in this paper, 100 images were combined with 2 

messages.  Both messages were of set length, s, one containing 

random data and the other the text of Moby Dick.  Each algorithm 

was set to write to only the least significant bit of each colour 

(red, green, blue).  200 stego-images were then obtained by 

embedding each message in each image using a given 

steganography technique.   

The 200 stego-images and 100 original images then had all their 

steganalysis values calculated and added to a file.  This file 

contained the estimated embedding rates from RS Analysis and 

Sample Pairs Analysis, as well as counts of occurrences of each 

Laplace formula value encountered in every image.  The file was 

then used to train SMO [6][7], a support vector machine learning 

algorithm from the WEKA Machine Learning Workbench [8]. 

SMO begins by identifying features that distinguish untouched 

images from stego-images.  The machine learner runs through 10 

times 10-fold cross-validation, giving the accuracy values that 

indicate the effectiveness of the algorithm being tested.  More 

effective algorithms will have lower accuracy rates through cross-

validation, as SMO will be unable to determine features that 

distinguish whether an image contains steganography.  This 

process was repeated for each algorithm and for different values 

of s. 

5. EXPERIMENTAL RESULTS 
Using embedding rates varying from 5% to 55% (by which time 

all algorithms were scoring ~100% accuracy), the four algorithms 

were evaluated using WEKA’s SMO.  BattleSteg and FilterFirst 

were run with two variations – once using the Laplace formula for 

filtering and once using the Sobel filter [9] (a gradient based edge 

detection algorithm).  As the results in Figure 1 show, the 

machine learner could do no better predict steganography (the 

majority for the image set) for FilterFirst for embedding rates up 

to 10%.  The three other algorithms, BlindHide, BattleSteg and 

HideSeek, all had accuracy rates up at 90% before they even got 

to a 10% embedding rate.   

Figure 1 also shows that FilterFirst is much more effective at 

hiding than the two traditional algorithms, HideSeek and 

BlindHide.  Unfortunately, BattleSteg did not perform as well as 

expected, beating only HideSeek.  BlindHide appears to sit 

between BattleSteg and FilterFirst, but should be avoided as a 

steganographic technique due to its lack of security and ability to 

often be detectable by the naked eye.  



 

Figure 1: Graph of Embedding Rate versus Machine Learning 

Accuracy 

These results seem to suggest that FilterFirst should be the 

algorithm of choice for effective steganography.  By simply 

shuffling the order in which the highest filter bits are written to, it 

becomes a secure and effective hiding technique.  A possible 

alternative to shuffling is to use a fixed proportion of the highest-

filter valued pixels and then select the remaining pixels randomly.  

BattleSteg does attempt to do this, but it cannot guarantee the 

proportion of high filter valued pixels it writes to.  It is possible 

for BattleSteg to never have a ‘hit’ whilst using this algorithm. 

6. CONCLUSION 
This paper has introduced two new techniques for image 

steganography, FilterFirst and BattleSteg.  These two techniques 

attempt to improve on the effectiveness of the hiding by using 

edge detection filters to produce better steganography.  These 

techniques have been tested against more traditional image 

steganography techniques, BlindHide and HideSeek, by using 

steganalysis methods. 

Using a machine learner to predict the use of steganography on 

images, we have shown that the proposed FilterFirst algorithm is 

very effective at hiding information.  FilterFirst beat all the 

steganalysis techniques until embedding rates became greater than 

7% and performed better than all other steganography algorithms 

tested.  The results indicate that using features of the cover, such 

as edges, is a better way of hiding information than in scan lines 

or randomly across the image. 

The steganalysis and steganography algorithms discussed in this 

paper have been implemented into a tool for ease of use during 

this research.  This tool has been made available for free under the 

Gnu General Public License at:  http://diit.sourceforge.net   
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