
Hiding Behind Corners:

Using Edges in Images for Better Steganography
 Kathryn Hempstalk

University of Waikato
Department of Computer Science

Hamilton, New Zealand
kah18@ waikato.ac.nz

ABSTRACT

Digital steganography involves taking an electronic file and

hiding it inside another electronic file. Current digital techniques

do not tend to take the cover (what the message is hidden in) into

account, and thus leave telltale marks on the stego-object (what

the cover becomes after hiding information). Since these marks

will cause people other than the intended recipient to suspect a

hidden message, it is important to make them as inconspicuous as

possible. This paper investigates using the cover’s original

information to avoid making marks on the stego-object, by hiding

raw electronic files inside digital colour images. Steganalysis and

machine learning is then used to evaluate the hiding process in

order to ensure the information is hidden in the best possible way.

Categories and Subject Descriptors

I.4.9 [Image Processing and Computer Vision]: Applications –

Steganography.

General Terms

Algorithms, Design, Security.

Keywords

Steganography, steganalysis, LSB embedding, image filtering.

1. INTRODUCTION
Hiding information by embedding secret data into an innocuous

medium is often referred to as steganography. Steganography can

be applied electronically by taking a message (a binary file) and

some sort of cover (often a sound or image file) and combining

both to obtain a “stego-object”. The stego-object is essentially the

cover with its redundant information replaced with the message.

Unfortunately, replacing the redundant information with

structured message data often results in the stego-object being an

augmented version of the cover “marked” by the hidden data –

and this makes it easy to suspect the presence of steganography.

Most of these marks can be attributed to the hiding algorithm’s

lack of concern for the cover’s content. If the cover’s original

content were taken into account then the message could be

concealed in areas of the cover where it would be less likely to

leave marks.

Previous attempts at achieving this goal have required the user to

provide the original cover as well as the stego-object. The best

areas to hide are first identified in the original cover, then these

areas are mapped across to the stego-object and the hidden

information is retrieved. The original cover must be provided

because the information overwritten in the message hiding process

may have been used to identify the best hiding areas. However, to

provide the original object is not secure, because taking the

differences between the two objects would be enough to suspect

the existence of (and in some cases, recover) the hidden

information.

This paper investigates an approach that eliminates the need for

providing the original object. We use images as a cover medium

and introduce two new algorithms based on using image filters to

determine effective hiding places. The next section describes

these algorithms. Section 3 briefly describes some steganalysis

methods used to test the effectiveness of the new algorithms.

Section 4 describes the experimentation performed using the

algorithms and the steganalysis techniques and Section 5

describes the results of this experimentation. Finally, the paper is

concluded in Section 6.

2. ALGORITHMS
The simplest way to hide binary data on an image is to use a

lossless image format (such as a Bitmap) and replace the x least

significant bits of each pixel in scan lines across the image with

the binary data. This is not secure as an attacker can simply

repeat the process to quickly recover the hidden information. This

technique, known here as “BlindHide” because of the way it

blindly hides information, is also not good at hiding – the initial

portion of the image is left degraded while the rest remains

untouched.

A tool known as “Hide and Seek for Windows 95” [1] attempts to

get around the security issues in BlindHide by randomly

distributing the hidden information across the image. A more

modern version of this algorithm, dubbed “HideSeek”, is used

here. HideSeek uses a random seed (provided by hashing a

password) to pick the order in which it will write to the pixels.

HideSeek is much more secure than BlindHide, but does not

necessarily leave the image in a better condition. The noise

introduced by HideSeek is randomly placed and often causes the

resulting stego-image to look speckled.

The noise left behind by both HideSeek and BlindHide is much

more noticeable to the naked eye in large blocks of colour – where

a single modified pixel stands out amongst its uniform

neighbours. This is expressed explicitly by the Laplace formula

[2]. The Laplace formula simply measures the difference between

a pixel and its four touching neighbours. The magnitude of the

formula increases with the colour variation and this can be used to

detect steganography by counting the number of pixels at a given

magnitude. Untouched images are more likely to contain a large

number of pixels with zero magnitudes since there is no reason for

small random variations to occur in large blocks of colour. Stego-

images often contain small variations, and can be detected easily

by examining Laplace magnitude counts. Therefore it seems

reasonable to suggest if a hiding algorithm were able to use the

Laplace formula during embedding, it would be able to hide the

information in a less noticeable way.

To do this, we introduce the FilterFirst algorithm. FilterFirst uses

an edge-detecting filter, such as the Laplace formula, to find the

areas of the image where there are pixels that are the least like

their neighbours. It hides in the highest values of the filter first.

Since we are only changing the x least significant bits for

steganography, we can use the y most significant bits for the filter.

Here x and y are integers where 1 <= x <= 7 and y = 8 - x. We can

guarantee that FilterFirst will be able to retrieve the information

from the same pixels it hides in because the bits used in filtering

are not changed by the hiding process. FilterFirst eliminates the

need to provide any extra information, such as the original image,

yet ensures the same pixels are used for hiding and retrieval.

However, FilterFirst is similar to BlindHide in that it is not a

secure algorithm. An attacker can repeat the filtering process and

retrieve the hidden information with very little effort. Whilst it

should be more difficult to identify steganographic images using

FilterFirst, it is much easier to retrieve the hidden information

than with HideSeek.

To create an algorithm that both hides effectively and securely we

combine HideSeek and FilterFirst to create BattleSteg. BattleSteg

stands for Battleships Steganography and is based on playing an

augmented game of Battleships to determine the best places to

hide. In this algorithm, the h% of highest filter values is

designated as ‘ships’. ‘Shots’ are randomly picked as pixel

positions on the cover image, until a ship is found (known as a

‘hit’). When a hit occurs, the next series of shots are clustered

around that hit in the hope there are more ships in that area. After

i initial shots we return to shooting randomly to prevent huge

expanding clusters of shots – which may cause noticeable visual

degradation on the stego-image. BattleSteg is overall more likely

to avoid pixels in large blocks of colour than HideSeek, yet has a

similar amount of security as without the random seed it is

impossible to know where to place the shots.

3. STEGANALYSIS
Just as clever techniques have been devised for hiding

information, an equal number of clever techniques have been

designed to detect the hidden information [3]. These techniques

are collectively known as ‘steganalysis’. As introduced earlier,

the Laplace formula is one such steganalytic method. Two other

popular techniques are RS Analysis [4] and Sample Pairs Analysis

[5].

RS Analysis makes small modifications to the least significant bit

plane in an image then uses these modifications and a

discrimination function to classify groups of pixels. The counts of

the groups based on the modifications allow the calculation of an

estimated embedding rate. Images that do not contain

steganography often have a natural embedding rate of up to 3%,

whereas images containing hidden information usually have

estimated embedding rates which accurately reflects the amount of

hidden information.

RS Analysis is a special case of Sample Pairs Analysis, which also

uses least significant bit modifications to help calculate an

estimated embedding rate. Sample Pairs Analysis utilises finite

state machines to classify groups of pixels modified by a given

pattern. Both steganalysis techniques are very accurate at

predicting the embedding rate on stego-images using least

significant bit embedding. Since the two proposed techniques,

FilterFirst and BattleSteg, both use least significant bit

embedding, we can use RS Analysis and Sample Pairs Analysis to

compare them against more traditional techniques such as

BlindHide and HideSeek.

4. EXPERIMENTAL DESIGN
Rather than evaluating a set of images by calculating the

steganalysis information and checking the values by hand,

machine learning is used. The idea behind this is simple – if a

machine learner has trouble accurately predicting whether

steganography is present, then the steganographic method is more

effective for that picture than a method where the machine learner

can correctly classify the image. Across many images, the

accuracy of all predictions should indicate the effectiveness of one

algorithm over another.

For testing in this paper, 100 images were combined with 2

messages. Both messages were of set length, s, one containing

random data and the other the text of Moby Dick. Each algorithm

was set to write to only the least significant bit of each colour

(red, green, blue). 200 stego-images were then obtained by

embedding each message in each image using a given

steganography technique.

The 200 stego-images and 100 original images then had all their

steganalysis values calculated and added to a file. This file

contained the estimated embedding rates from RS Analysis and

Sample Pairs Analysis, as well as counts of occurrences of each

Laplace formula value encountered in every image. The file was

then used to train SMO [6][7], a support vector machine learning

algorithm from the WEKA Machine Learning Workbench [8].

SMO begins by identifying features that distinguish untouched

images from stego-images. The machine learner runs through 10

times 10-fold cross-validation, giving the accuracy values that

indicate the effectiveness of the algorithm being tested. More

effective algorithms will have lower accuracy rates through cross-

validation, as SMO will be unable to determine features that

distinguish whether an image contains steganography. This

process was repeated for each algorithm and for different values

of s.

5. EXPERIMENTAL RESULTS
Using embedding rates varying from 5% to 55% (by which time

all algorithms were scoring ~100% accuracy), the four algorithms

were evaluated using WEKA’s SMO. BattleSteg and FilterFirst

were run with two variations – once using the Laplace formula for

filtering and once using the Sobel filter [9] (a gradient based edge

detection algorithm). As the results in Figure 1 show, the

machine learner could do no better predict steganography (the

majority for the image set) for FilterFirst for embedding rates up

to 10%. The three other algorithms, BlindHide, BattleSteg and

HideSeek, all had accuracy rates up at 90% before they even got

to a 10% embedding rate.

Figure 1 also shows that FilterFirst is much more effective at

hiding than the two traditional algorithms, HideSeek and

BlindHide. Unfortunately, BattleSteg did not perform as well as

expected, beating only HideSeek. BlindHide appears to sit

between BattleSteg and FilterFirst, but should be avoided as a

steganographic technique due to its lack of security and ability to

often be detectable by the naked eye.

Figure 1: Graph of Embedding Rate versus Machine Learning

Accuracy

These results seem to suggest that FilterFirst should be the

algorithm of choice for effective steganography. By simply

shuffling the order in which the highest filter bits are written to, it

becomes a secure and effective hiding technique. A possible

alternative to shuffling is to use a fixed proportion of the highest-

filter valued pixels and then select the remaining pixels randomly.

BattleSteg does attempt to do this, but it cannot guarantee the

proportion of high filter valued pixels it writes to. It is possible

for BattleSteg to never have a ‘hit’ whilst using this algorithm.

6. CONCLUSION
This paper has introduced two new techniques for image

steganography, FilterFirst and BattleSteg. These two techniques

attempt to improve on the effectiveness of the hiding by using

edge detection filters to produce better steganography. These

techniques have been tested against more traditional image

steganography techniques, BlindHide and HideSeek, by using

steganalysis methods.

Using a machine learner to predict the use of steganography on

images, we have shown that the proposed FilterFirst algorithm is

very effective at hiding information. FilterFirst beat all the

steganalysis techniques until embedding rates became greater than

7% and performed better than all other steganography algorithms

tested. The results indicate that using features of the cover, such

as edges, is a better way of hiding information than in scan lines

or randomly across the image.

The steganalysis and steganography algorithms discussed in this

paper have been implemented into a tool for ease of use during

this research. This tool has been made available for free under the

Gnu General Public License at: http://diit.sourceforge.net

7. REFERENCES
[1] Maroney, C. Hide and Seek 5 for Windows 95, computer

software and documentation, originally released in Finland

and the UK, n.d. Downloadable from:

http://www.rugeley.demon.co.uk/security/hdsk50.zip

[2] Katzenbeisser, S. and Petitcolas F.A.P. Information hiding

techniques for steganography and digital watermarking.

Artech House, Norwood, MA 02062, USA, 1999.

[3] Wang, S. and Wang, H. Cyber Warfare: Steganography vs.

Steganalysis, Communications of the ACM Volume 47,

Number 10, pp 76-82, 2004

[4] Fridrich, J., Goljan, M. and Du,R. (2001) Reliable Detection

of LSB Steganography in Color and Grayscale Images,

Proceedings of ACM Workshop on Multimedia and Security,

Ottawa, October 5, 2001, pp. 27-30.

[5] Wang, Z., Dumitrescu, S. and Wu, X. Detection of LSB

Steganography via Sample Pair Analysis, Information Hiding

2002, LCNS 2578, pp 355-372, 2003.

[6] Platt, J. Fast Training of Support Vector Machines using

Sequential Minimal Optimization. Advances in Kernel

Methods - Support Vector Learning, B. Schoelkopf, C.

Burges, and A. Smola, eds., MIT Press, 1998.

[7] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C. and Murthy,

K.R.K. Improvements to Platt's SMO Algorithm for SVM

Classifier Design. Neural Computation, 13(3), pp 637-649,

2001.

[8] Frank, E. and Witten, I.H. Data Mining, Morgan Kaufmann

Publishers, San Francisco, USA, 1999.

[9] Green, B. Edge Detection Tutorial, 2002, Available at:

http://www.pages.drexel.edu/~weg22/edge.html (May 2005)

